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In the present paper, we introduce a representation of the potential energy surface for the H2O · · ·H2 system
based on orthogonal vectors, assuming that the two molecules are rigid. We represent the interaction potential
by an expansion in real hyperspherical harmonics depending on the distance between the centers of mass of
the two molecules and on four angles, which account for two contributions: an external one depending on the
three angle variables which define the mutual orientation of the two molecules and an internal one expressed
by the angle which describes the position of the oxygen atom in H2O with respect to the H2O · · ·H2 system.
The surface was generated in the framework of the supermolecular approach, using the counterpoise-corrected
interaction energies at the MP2/aug-cc-pVQZ level. Comparisons with other recent work are presented and
features of the representation discussed.

1. Introduction

A detailed study of the water-hydrogen van der Waals
clusters is desirable for understanding their properties. For
example, the potential energy surface of H2O · · ·H2 is of great
importance for astrophysical processes, such as the formation
of molecular hydrogen on icy interstellar dust grains.1 A
complete characterization of such processes ultimately relies
on detailed comparisons between experiment and theory.2 This
article presents a new representation which describes the
potential energy surface (PES), as a function of the radial
distance between the centers of mass of systems H2O · · ·H2 and
their mutual orientation. These systems are described by
orthogonal vectors whose lenghts are held fixed. In such a way,
vibrational motions are kept frozen and stretching and bending
modes are decoupled.

The interaction potential of this five-body problem can be
expressed as a function of five variables: the distance between
the centers of mass of the molecules, R, and the angles θ1, θ2,
φ, and R (see Figure 1 and section 2). Previous works on simpler
systems have exploited hyperspherical harmonics as the proper
orthonormal expansion basis set for the manifold spanned by
the specific range of angular variables.3–9

The energies were calculated by using MP2/aug-cc-pVQZ,
in 18 leading configurations according to the orientation of the
molecules (R, θ1, θ2, φ) with 0 e R < 2π measuring the oxygen
position, with 0 e θ1 e π and 0 e θ2 e π being the polar
angles of the orientation of the vectors along the H2 bonds with
respect to R and 0 e φ e π the torsion angle; see Figure 1. For
each leading configuration, the H2O and H2 geometries are kept
frozen at those of equilibrium. This choice is simpler than taking
vibrationally averaged geometries, which should be more
accurate (see, for example, Valiron et al.1 and Hodges et al.10).
In these rigid approaches, the interaction potential depends only

on a coordinate. The R coordinate chosen here, and the
mathematical model, hyperspherical harmonics expansion, al-
lows compactness and full account of symmetries. The analytical
form of the potential energy surfaces is constructed by fitting
the energies to a fifth degree generalized Rydberg function.11

Accurate results for a system like the H2O · · ·H2 system have a
high computational cost. For example, Valiron et al.,1 using the
CCSD(T) and CCSD(T)-R12 methodologies, computed the
reference PES for 75000 points on the 5D grid, consisting of
the 3000 random orientations of H2 relative to H2O.1 We show
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Figure 1. The mutual position of the H2O and H2 molecules is
expressed by five coordinates in the Cartesian coordinate framework
x y z. The axes z′ and z′′ are also defined, respectively, as the axis
parallel to the H-H bond in the H2 molecule and the axis passing
through the center of mass CM′′ of the H2O molecule and parallel to
the vector joining the H atoms in H2O (Jacobi vector). The radial
coordinate R is defined as the distance between the center of mass of
H2O, CM′′, and the center of mass of H2, CM′, θ1 and θ2 are the angles
between the z′ and z axes and z′′ and z axes, respectively, and they
vary between 0 and π, φ is the dihedral angle between the plane going
through the z′′ and z axes and the plane going through the z′ and z
axes, and its value varies between 0 and π. Finally, R is the angle that
describes the rotation of H2O around the z′′ axis and varies between 0
and 2π, R is 0 when the vector joining CM′′ and the oxygen atom lays
on the plane passing through the z′′ and z axes in the configuration
where the oxygen atom has the farthest position to CM′, R ) π when
this vector lays on the same plane, but in the closest position to CM′,
finally it is π/2 when the vector is perpendicular to the plane defined
by z′′ and z.
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that calculating a reduced number of selected geometries (at
the MP2 level in this work) permits the construction of an
accurate PES useful for studies of the dynamics.

The paper is organized as follows. In section 2, we discuss
the representation of the PES. In section 3, the ab initio
calculation for such configurations are presented, and in section
4, we discuss the results. Conclusions follow in section 5.

2. Representation of the Potential Energy Surface

The parametrization of a five-body system is based on four
orthogonal vectors. The natural choice here is a vector along
the H-H axis of H2, denoted as z′ (see Figure 1), two vectors
referring to the H2O molecule (one along the H-H distance
and another one in the direction of the line connecting the middle
of the H-H separation and the O atom). Finally, one vector
connects the center of mass CM′ of the H2 molecule and the
center of mass CM′′ of H2. This vector defines the radial
coordinate R as the distance between CM′ and CM′′. The angle
formed by the axis z′ passing through CM′ along the H-H bond
and the axis z, parallel to R, is called θ1, while the angle formed
by the axis z′′ passing through CM′ and parallel to the H-H
line in the H2O molecule and the axis z is named θ2. The value
of both angles varies between 0 and π. φ is the angle between
the planes defined by the z′ and z axes and z′′ and z axes, and
its value varies between 0 and π. Finally, R is the angle that
the water molecular plane forms with respect to R and varies
between 0 and 2π.

The PES can be expanded into a series of appropriate angular
functions multiplied by radial coefficients (expansion moments),
as follows:

where the υm(R) coefficients are the expansion moments
depending on the R coordinate and Fm(R, θ1, θ2, φ) are the
angular functions, which can be written in terms of a function
w(R) (see below), multiplied by the bipolar spherical harmonic,
YL1L2

L0 (θ1, θ2, φ):12

with L1, L2 ) 0, 1, 2, ..., |L1 - L2| e L e L1 + L2; then, eq 1
can be rewritten as

where

is the Wigner 3 - j symbol, -min(L1, L2) e m e min(L1, L2),
YL1

m (θ1, 0) and YL2
-m(θ2, φ) are the spherical harmonics.

Figure 2. The 18 leading configurations are illustrated. For each configuration, the value of the R angle is reported, indicated by the subscripts <,
⊥, and > for R ) 0, π/2, and π, respectively. In parentheses, all three values indicating the angles θ2, θ1, and φ are reported. As for L, φ is
undetermined and configurations are equivalent for any value of R, while Ta> and Ta< are equivalent because of symmetry properties, reducing the
total to 15 different configurations.

V(R; R, θ1, θ2, φ) ) ∑
m

υm(R)Fm(R, θ1, θ2, φ) (1)

V(R; R, θ1, θ2, φ) ) ∑
L1,L2,L

υL1L2L(R)w(R)YL1L2

L0 (θ1, θ2, φ)

(2)

V(R; R, θ1, θ2, φ) )

∑
i

wi(R) ∑
L1,L2,L

(L1 L2 L
m -m 0 )υL1L2L(R)YL1

m (θ1, 0)YL2

-m(θ2, φ)

(3)

(L1 L2 L
m -m 0 )
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Since both molecules involved here, H2O and H2, are
symmetric with respect to exchange of their hydrogen atoms,
only even moments contribute to the sum in eq 3 and it will be
shown adequate that the sum can be truncated for L1 ) L2 ) 2,
as done in previous works for systems involving diatomics, such
as N2 · · ·N2, O2 · · ·O2, and N2 · · ·O2.3–7 Explicitly, after extensive
algebraic manipulations, one obtains

In order to evaluate the expansion moments of the interaction
potential V(R, θ1, θ2, φ, R), we define 18 leading configurations
(see Figure 2), whose choice is due to physical and geometric
considerations. The advantage of such a choice is to select a
number of configurations which permit interpolation to account
fully for the symmetries of the interactions between the
molecules forming the system. We can divide the leading
configurations into six classes depending on their values of θ2,
θ1, and φ: specifically, L is the configuration with θ2 ) θ1 ) 0
and φ undetermined; for the H configuration θ2 ) θ1 ) π/2
and φ ) 0; Z has θ2 ) θ1 ) π/4 and φ ) 0; for X, θ2 ) θ1 )
φ ) π/2; Ta has θ2 ) 0 and θ1 ) φ ) π/2; finally, Tb has θ1 )
0 and θ2 ) φ ) π/2. For each class, three different configura-
tions exist for R values 0, π/2, and π that we indicate with

subscripts <, ⊥, and >, respectively. Because of the symmetry
of the system, Ta> ) Ta<, while, for L, since φ is undetermined,
R cannot be defined in these cases. Fixing the R configuration,
we have a system with six equations similar to eq 4 that can be
algebraically inverted by Cramer’s rule:

where i corresponds to the three different values of the R angle,
R ) 0, π/2, π.

It is now convenient to define the w(R) functions, which
establish the weight of each set of leading configuration (i )
0, π/2, π) according to the corresponding R value. Specifically,
by expanding it in a cosine series including cos(nR) terms (n )
0, 1, 2), we have, in general,

Figure 3. H2O · · ·H2 interaction energies for the leading configurations of Figure 2 as a function of R, the distance between the centers of mass
of the H2O and H2 molecules. Symbols indicate ab initio points and curves are from Rydberg fits, as described in the text.

V(R; R, θ1, θ2, φ) ) ∑
i

wi(R)[υ000(R) +

√5
4

υ202(R)(3 cos(2θ1) + 1) +
√5
4

υ022(R)(3 cos(2θ2) +

1) +
√5
16

υ220(R)[(3 cos(2θ1) + 1)(3 cos(2θ2) + 1) +

12 sin(2θ1) sin(2θ2) cos(φ) + 3(1 - cos(2θ1)) ×

(1 - cos(2θ2)) cos(2φ)] - 5√14
112

υ222(R)[(3 cos(2θ1) +

1)(3 cos(2θ2) + 1) + 6 sin(2θ1) sin(2θ2) cos(φ) -
3(1 - cos(2θ1))(1 - cos(2θ2)) cos(2φ)] +

3√70
112

υ224(R)[(3 cos(2θ1) + 1)(3 cos(2θ2) + 1) -

8 sin(2θ1) sin(2θ2) cos(φ) + 1
2

(1 - cos(2θ1)) ×

(1 - cos(2θ2)) cos(2φ)]] (4)

υ000(i; R) ) 1
9

(2VH(i; R) + VL(i; R) + 2VTa
(i; R) +

2VTb
(i; R) + 2VX(i; R))

υ202(i; R) ) -2√5
45

(VH(i; R) - VL(i; R) + VTa
(i; R) -

2VTb
+ VX(i; R))

υ022(i; R) ) -2√5
45

(VH(i; R) - VL(i; R) - 2VTa
(i; R) +

VTb
+ VX(i; R))

υ220(i; R) ) -2√5
225

(4VH(i; R) - VL(i; R) - 5VTa
(i; R) -

5VTb
- 5VX(i; R) + 12VZ(i; R))

υ222(i; R) )
√14
315

(13VH(i; R) - VL(i; R) + 7VTa
(i; R) +

7VTb
- 14VX(i; R) - 12VZ(i; R))

υ224(i; R) ) 8√70
525

(VH(i; R) - VL(i; R) - 2VZ(i; R)) (5)

wi(R) ) ai + bi cos(R) + ci cos(2R) (6)
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for i ) 0, π/2, π, specifically:

allowing to compute parameters ai, bi, and ci as follows:

The general expression for the potential is obtained substitut-
ing eqs 5 and 8 in eq 4 for each R configuration.

The total isotropic term of potential energy is given by the
υj000(R) function which turns out to be

This term is important because it can be measured by
molecular beam experiments with rotationally hot molecules
and can be compared with other systems.13,14

3. Ab Initio Calculations

The ab initio calculations were performed using the Gaussian
03 code.15 Initially, we optimized the geometries for H2O and
H2 molecules (Table 1), by using the CCSD(T) method, with
the cc-pVXZ and aug-cc-pVXZ basis sets (X ) D, T, Q, 5).
We also used the complete basis set (CBS) extrapolation.
Employing asymptotic extrapolation allows calculations of
molecular properties with a reasonable degree of accuracy for
molecules of relatively high molecular size. In this work, it can
be seen that calculations without the diffusion function (basis
set without aug function) do not reproduce satisfactorily the
polarizability of H2O and H2 molecules; therefore, they are not
reliable to construct the PES for this system. We therefore have
chosen a simple method (MP2) combined with an augmented
complete basis set, that appears to give accurate results
exemplified in Table 2, which lists well depths and positions
for the isotropic component of the potential υ000. The repre-
sentation of the PES is in terms of the mathematical approach
(hyperspherical harmonics) outlined in the previous section.
With respect to data taken as a reference, for H2O, the smallest
errors are 0.0013 Å for the O-H distance in H2O and 0.1151°
for the HOH angle at aug-cc-pVQZ, while for H2 the error is
0.0005 Å for the H-H distance. For the frequencies of the
vibrational modes, the errors are 42.9, 129.8, and 148.7 cm-1

for H2O and 1.5 cm-1 for H2, both at aug-cc-pVQZ. Our data
were compared with experimental polarizabilities and dipole
moments: for H2O, we get an error of 0.1092 au and 0.1128 D,
respectively, and 0.0622 au for the H2 polarizability at aug-cc-
pVQZ. According to these results, the geometries to be used
will be the ones calculated at CCSD(T)/aug-cc-PVQZ, and the
molecules will be kept frozen for further calculations.

The second-order Møller-Plesset (MP2) level and aug-cc-
pVQZ basis set were chosen to calculate the PES. In order to

eliminate the basis set superposition error, the full counterpoise
Boys and Bernardi method16 was used. According to it, the
energies of monomers were calculated using the same full basis
set, and the interaction energy is then defined as

where �A and �B are the basis sets of each monomer of the
complex AB. We calculated a set of 101 single potential energy
points on the surfaces, which allows us to describe completely
the potential energy surface, for each of the 15 configurations
(see Figure 2), remembering that we have 18 different schemes,
six for R ) 0, six for R ) π/2, and six for the R ) π
configuration, but L> ) L⊥ ) L< and Ta> ) Ta<, as described
previously (section 2 and Figure 2). All energies were calculated
as a function of the distance R between the center of mass CM′′
of H2O and the center of mass CM′ of H2 at a fixed R, θ1, θ2, and
φ angle (see Figure 1 for further details). The smallest distance
R depends on the leading configuration, and can be appreciated
by inspection of Figure 3.

The analytical form of the PES, for each of the leading
configurations, is constructed by fitting the following fifth degree
generalized Rydberg function11 into the ab initio points:

where De, ai, Req, and Eref are adjustable parameters. A nonlinear
least-squares procedure was used to obtain the values of the
adjustable parameters that minimize the differences between
analytic energies obtained with the generalized Rydberg function
and the MP2/aug-cc-pVQZ data. The largest rms value of these
fits is 0.005731 kcal mol-1 for the L configuration, and the
smallest one is 0.000103 kcal mol-1 for the H1 configuration.
(As for the van der Waals systems, also cm-1 is a useful unit,
here we report the conversion unit 1 kcal mol-1 ) 349.76 cm-1.)

There are several proposals for “combination formulas” that
allow one to predict the strength, ε, and range, Rm, of the van
der Waals contribution of systems of the type of the ones studied
here. We follow a procedure similar to that outlined in ref 17,
which consists of the representation of ε and Rm in terms of the
polarizabilities R1 and R2 of the interacting partners.18 Specifically,

where Rm is given in Å and R1 and R2 in Å3,

where CLR is an effective long-range London coefficient. κε is
a scaling factor and depends on the energy units (for energy in
kcal mol-1, κε ) 362.051). N1 and N2 are effective numbers of

w1(0) ) 1 w1(π/2) ) 0 w1(π) ) 0
w2(0) ) 0 w2(π/2) ) 1 w2(π) ) 0
w3(0) ) 0 w3(π/2) ) 0 w3(π) ) 1

(7)

w1(R) ) 1
4
+ 1

2
cos(R) + 1

4
cos(2R)

w2(R) ) 1
2
- 1

2
cos(2R)

w3(R) ) 1
4
- 1

2
cos(R) + 1

4
cos(2R)

(8)

ῡ000(R) ) 1
4

υ000(R ) 0; R) + 1
2

υ000(R ) π/2; R) +

1
4

υ000(R ) π; R) (9)

ECP ) EAB(�A + �B) - [EA(�A + �B) + EB(�A + �B)]
(10)

V(R) ) De ∑
i)1

5

(1 + ai(R - Req)
i) exp[-ai(R - Req)] + Eref

(11)

Rm ) 1.767
R1

1/3 + R2
1/3

(R1R2)
0.095

(12)

ε ) 0.72CLRRm
-6 (13)

CLR ) κε

R1R2

�R1

N1
+ �R2

N2

(14)
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electrons which contribute to the polarizability of each partner;
numerical coefficients in eqs 12-14 were determined empiri-

cally.18 Equation 1419 is a generalization of the Slater-Kirkwood
equation;20 it takes into account the various multipole interaction
terms and the damping effect (see ref 19 and references therein).
The effective number of electron N1 and N2 considers not only
the external electrons but also the internal ones,21 whose
contribution to polarizability is not negligible.

We also introduce a correction for the induction effects due
to the interaction between the permanent dipole moment of H2O
and the induced dipole of H2.17,22 These effects are introduced
as a correction to the previous formulas adding an attractive
induction term to the long-range part of the potential. The
formula for the induction coefficient CIN is as follows:

where µ1 is the dipole moment of H2O, R2 is the polarizability
of H2, and κi is a scaling factor depending on units, κi )
14.40984 for CIN in kcal/mol Å6. Accordingly, the corrected
equations for Rm and ε are

where F ) (CLR + CIN)/CIN, and

In this study, we used eqs 16 and 17 to estimate the distance
and energy of equilibrium at different levels of calculations,
respectively, as presented in Table 2. From these data, we can
see that in the values without induction correction using
CCSD(T)/aug-cc-pVQZ methodology (3.5735 Å for the distance
of equilibrium and 0.1295 kcal mol-1 for the energy of
equilibrium) the results are close to the experimental data2 (3.61
Å and 0.1115 kcal mol-1) and more accurate than other
methodologies (MP423 and CCSD(T)-R121). Therefore, these
values without induction correction can guide us to calibrate

TABLE 2: Comparison of Phenomenological17,22 Estimates
with CCSD(T) Values for Different Basis Sets and Other
Dataa

without induction
correction

with induction
correction

basis set Rm ε Rm ε

aug-cc-pVDZ 3.5657 0.1289 3.5272 0.1542
aug-cc-pVTZ 3.5731 0.1296 3.5362 0.1538
aug-cc-pVQZ 3.5735 0.1295 3.5370 0.1534
CBS extrapolationb 3.5347 0.1237 3.4961 0.1483

Rm ε

MP2 3.5704 0.1336
experimental 3.612 0.11152

other calculations 3.5223 0.141523

3.49081 0.17531

a Well depth energies, ε (kcal mol-1), and corresponding values
for the R coordinate, Rm (Å), for the isotropic component υ000. b See
ref 28, using formula Y ) Y∞ + Y0/X3.

Figure 4. Dependence on distance of the centers of mass of H2O · · ·H2

molecules of isotropic moments compared with reference data of
Valiron et al.1 and Phillips et al.23

Figure 5. Two-dimensional cut through the H2O · · ·H2 PES. Contours are given in kcal mol-1. Tb ) (R, R, 0, π/2, 0) configuration (proton acceptor).

CIN ) κiR2µ1
2 (15)

Rm ) 1.767
R1

1/3 + R2
1/3

(R1R2F)0.095
(16)

ε ) 0.72(CLR + CIN)Rm
-6 (17)
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our model to reproduce the distance and energy of equilibrium
for the H2O · · ·H2 system.

4. Results and Discussion

We have considered the 18 leading configurations (of which
15 are different, see Figure 2) for which the H2O · · ·H2

interaction energy has been calculated at various R (the distance
between the centers of mass of the H2O molecule and of the H2

molecule) by the ab initio methods, as explained in detail in
section 3.

Figure 3 shows both the ab initio energy points and the
corresponding Rydberg curve fitting for the 15 different
configurations. Purely repulsive systems are those whose curves
do not have a minimum. Ab initio calculations show that such
systems are those involving H⊥, X>, L, H>, X⊥, and Tb<

configurations. The hydrogen bond plays an important role in
the stabilization of these systems. According to previous
studies24 regarding the interaction between H2O and H2, the H2O
molecule acts as a proton acceptor or proton donor. In the first
case, the H-H bond of H2 is expected to be collinear to the C2

axis in the direction of the oxygen atom, while, in the second
case, one of the two OH bonds is perpendicular to the H-H
bond of the H2 molecule and directed toward the middle point
of the H-H distance. Tb> is the configuration with the highest
value of minimum in energy (more negative) and corresponds
to the proton acceptor case. None of the leading configurations
corresponds to the proton acceptor case, although some of them
show an attractive character ascribable to hydrogen bond
interaction, such as Z and Ta configurations. As for the Z>
configuration, it shows repulsive character like the other
configurations with R ) π, but it also presents a minimum,
differently from the other configurations with the same value
of R. By comparing two R ) 0 configurations such as Z< and
Tb<, the energy of equilibrium of Z< is lower (more negative)
and the intermolecular potential increase is steeper than Tb<. The
stabilizing effect of the hydrogen bond, with deep minima and
steep increasing of interaction potentials at short range, has
already been observed in previous works.8,9 Potential profiles
of Ta configurations are very similar, because the position of
the oxygen atom has little influence on these geometries.

Figure 6. Two-dimensional cut through the H2O · · ·H2 PES. Contours are given in kcal mol-1. (a) (3.57036, 0, AH2O - θ, θ2, π/2) configuration. (b)
(3.57036, AH2O, AH2O - θ, θ2, 0) configuration.
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Figure 4 shows the isotropic part of the potential υ000 as a
function of R (eq 9) calculated in this work and compared with
reference data.1,23 In Table 2, the distance and energy of
equilibrium for υ000 are reported. It can be of interest to compare
the isotropic term, energy of 0.1336 kcal mol-1 at 3.5704 Å,
with other systems like H2O · · ·He where the energy and distance
are 0.0633 kcal mol-1 at 3.45 Å13 and 0.066 kcal mol-1 at 3.626
Å.8

Figure 5 shows the isoenergetic contours for the proton
acceptor case Tb>, as a function of R and R angles. The minimum
energy and distance is 0.6014 kcal mol-1 and 3.1224 Å to be
compared with data of Valiron et al.1 and of Zhang et al.24

(0.6723 kcal mol-1 at 3.0798 Å and 0.5638 kcal mol-1 at 3.1
Å, respectively). The difference in energy is as expected from
the relative accuracies of the calculations.

In order to compare our model with the PES presented by
Valiron et al.,1 we show in Figure 6 two isoenergetic contours.
In Figure 6a, we kept the distance at the isotropic minimum,
Rm ) 3.57036 Å and R ) 0, the angle θ1 ) AH2O - θ and φ )
0, where AH2O is the angle of the HOH bond in H2O (compared
with Figure 8 of ref 1). In Figure 6b, the distance is the same
with R ) AH2O, θ1 ) AH2O - θ, and φ ) π/2 (compared with
Figure 7-f of ref 1). These figures are seen to reproduce
adequately the reference data, using a simpler method with a
physically motivated and compact representation. We consider
that the material provided allows direct comparison of angular
dependence with that of previous work (Valiron et al.1), although
a figure cannot be provided lacking data input for the latter.

5. Conclusion

A representation of the potential energy surface of the rigid
H2O · · ·H2 system based on orthogonal vectors was presented.
The interaction potential was represented by an expansion in
real hyperspherical harmonics depending on the distance R
between the centers of mass of the two molecules and four
angular variables θ1, θ2, φ, and R; three of these account for an
external contribution depending on the mutual orientation of
the two molecules, and an internal contribution, depending on
one angle, R, which describes the position of the oxygen atom
in H2O with respect to the entire system. The system studied in
this work is definitely more complex than other systems
previously studied by orthogonal vector representation,8,9,12

where the interatomic potential depends at most on three angle
variables. The extension of the dimension of the manifold in
this case in not trivial.

The surface was generated in the framework of the super-
molecular approach, using the counterpoise-corrected interaction
energies at the MP2/aug-cc-pVQZ level. The PES was computed
for about one hundred for each of the 18 leading configurations,
whose number reduces to 15 because of symmetry properties.
Results were compared with experimental and theoretical1 works
with a higher computational cost, involving a very high number
of points on the 5D grid and a very large number of random
orientations of H2O and H2 molecules (for other state-of-the-
art ab initio calculations of the H2O · · ·H2 system, see, for
example, Hodges et al.10). This method allows us to reach a
compromise between the accuracy of results and the economicity
of the calculations. Especially the expansion used in this method
can be employed to calculate the isotropic component of the
potential. Hyperspherical harmonics allow us to account for
the symmetry properties of the system, providing all of the

configurations of the five-dimensional PES for all of the values
of R and the angle variables, of use for molecular dynamics
simulations.
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