Potential Energy Surface for the $\mathbf{H}_{2} \mathbf{O}-\mathbf{H}_{2}$ System ${ }^{\dagger}$

P. R. P. Barreto, ${ }^{*, *}$ V. W. Ribas, ${ }^{*, *}$ and F. Palazzetti*, ${ }^{*}$
Laboratório Associado de Plasma - LAP, Instituto Nacional de Pesquisas Espaciais - INPE/MCT, São José dos Campos, SP, CEP 12247-970, CP515, Brazil, and Dipartimento di Chimica, Università di Perugia, 06123 Perugia, Italy

Received: June 2, 2009; Revised Manuscript Received: October 19, 2009

Abstract

In the present paper, we introduce a representation of the potential energy surface for the $\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2}$ system based on orthogonal vectors, assuming that the two molecules are rigid. We represent the interaction potential by an expansion in real hyperspherical harmonics depending on the distance between the centers of mass of the two molecules and on four angles, which account for two contributions: an external one depending on the three angle variables which define the mutual orientation of the two molecules and an internal one expressed by the angle which describes the position of the oxygen atom in $\mathrm{H}_{2} \mathrm{O}$ with respect to the $\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2}$ system. The surface was generated in the framework of the supermolecular approach, using the counterpoise-corrected interaction energies at the MP2/aug-cc-pVQZ level. Comparisons with other recent work are presented and features of the representation discussed.

1. Introduction

A detailed study of the water-hydrogen van der Waals clusters is desirable for understanding their properties. For example, the potential energy surface of $\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2}$ is of great importance for astrophysical processes, such as the formation of molecular hydrogen on icy interstellar dust grains. ${ }^{1} \mathrm{~A}$ complete characterization of such processes ultimately relies on detailed comparisons between experiment and theory. ${ }^{2}$ This article presents a new representation which describes the potential energy surface (PES), as a function of the radial distance between the centers of mass of systems $\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2}$ and their mutual orientation. These systems are described by orthogonal vectors whose lenghts are held fixed. In such a way, vibrational motions are kept frozen and stretching and bending modes are decoupled.
The interaction potential of this five-body problem can be expressed as a function of five variables: the distance between the centers of mass of the molecules, R, and the angles θ_{1}, θ_{2}, ϕ, and α (see Figure 1 and section 2). Previous works on simpler systems have exploited hyperspherical harmonics as the proper orthonormal expansion basis set for the manifold spanned by the specific range of angular variables. ${ }^{3-9}$

The energies were calculated by using MP2/aug-cc-pVQZ, in 18 leading configurations according to the orientation of the molecules $\left(\alpha, \theta_{1}, \theta_{2}, \phi\right)$ with $0 \leq \alpha<2 \pi$ measuring the oxygen position, with $0 \leq \theta_{1} \leq \pi$ and $0 \leq \theta_{2} \leq \pi$ being the polar angles of the orientation of the vectors along the H_{2} bonds with respect to R and $0 \leq \phi \leq \pi$ the torsion angle; see Figure 1. For each leading configuration, the $\mathrm{H}_{2} \mathrm{O}$ and H_{2} geometries are kept frozen at those of equilibrium. This choice is simpler than taking vibrationally averaged geometries, which should be more accurate (see, for example, Valiron et al. ${ }^{1}$ and Hodges et al. ${ }^{10}$). In these rigid approaches, the interaction potential depends only

[^0]

Figure 1. The mutual position of the $\mathrm{H}_{2} \mathrm{O}$ and H_{2} molecules is expressed by five coordinates in the Cartesian coordinate framework $x y z$. The axes z^{\prime} and $z^{\prime \prime}$ are also defined, respectively, as the axis parallel to the $\mathrm{H}-\mathrm{H}$ bond in the H_{2} molecule and the axis passing through the center of mass $\mathrm{CM}^{\prime \prime}$ of the $\mathrm{H}_{2} \mathrm{O}$ molecule and parallel to the vector joining the H atoms in $\mathrm{H}_{2} \mathrm{O}$ (Jacobi vector). The radial coordinate R is defined as the distance between the center of mass of $\mathrm{H}_{2} \mathrm{O}, \mathrm{CM}^{\prime \prime}$, and the center of mass of $\mathrm{H}_{2}, \mathrm{CM}^{\prime}, \theta_{1}$ and θ_{2} are the angles between the z^{\prime} and z axes and $z^{\prime \prime}$ and z axes, respectively, and they vary between 0 and π, ϕ is the dihedral angle between the plane going through the $z^{\prime \prime}$ and z axes and the plane going through the z^{\prime} and z axes, and its value varies between 0 and π. Finally, α is the angle that describes the rotation of $\mathrm{H}_{2} \mathrm{O}$ around the $z^{\prime \prime}$ axis and varies between 0 and $2 \pi, \alpha$ is 0 when the vector joining $\mathrm{CM}^{\prime \prime}$ and the oxygen atom lays on the plane passing through the $z^{\prime \prime}$ and z axes in the configuration where the oxygen atom has the farthest position to $\mathrm{CM}^{\prime}, \alpha=\pi$ when this vector lays on the same plane, but in the closest position to CM^{\prime}, finally it is $\pi / 2$ when the vector is perpendicular to the plane defined by $z^{\prime \prime}$ and z.
on a coordinate. The R coordinate chosen here, and the mathematical model, hyperspherical harmonics expansion, allows compactness and full account of symmetries. The analytical form of the potential energy surfaces is constructed by fitting the energies to a fifth degree generalized Rydberg function. ${ }^{11}$ Accurate results for a system like the $\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2}$ system have a high computational cost. For example, Valiron et al., ${ }^{1}$ using the $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{CCSD}(\mathrm{T})-\mathrm{R} 12$ methodologies, computed the reference PES for 75000 points on the 5D grid, consisting of the 3000 random orientations of H_{2} relative to $\mathrm{H}_{2} \mathrm{O} .{ }^{1}$ We show
that calculating a reduced number of selected geometries (at the MP2 level in this work) permits the construction of an accurate PES useful for studies of the dynamics.

The paper is organized as follows. In section 2, we discuss the representation of the PES. In section 3, the $a b$ initio calculation for such configurations are presented, and in section 4 , we discuss the results. Conclusions follow in section 5.

2. Representation of the Potential Energy Surface

The parametrization of a five-body system is based on four orthogonal vectors. The natural choice here is a vector along the $\mathrm{H}-\mathrm{H}$ axis of H_{2}, denoted as z^{\prime} (see Figure 1), two vectors referring to the $\mathrm{H}_{2} \mathrm{O}$ molecule (one along the $\mathrm{H}-\mathrm{H}$ distance and another one in the direction of the line connecting the middle of the $\mathrm{H}-\mathrm{H}$ separation and the O atom). Finally, one vector connects the center of mass CM^{\prime} of the H_{2} molecule and the center of mass $\mathrm{CM}^{\prime \prime}$ of H_{2}. This vector defines the radial coordinate R as the distance between CM^{\prime} and $\mathrm{CM}^{\prime \prime}$. The angle formed by the axis z^{\prime} passing through CM^{\prime} along the $\mathrm{H}-\mathrm{H}$ bond and the axis z, parallel to R, is called θ_{1}, while the angle formed by the axis $z^{\prime \prime}$ passing through CM^{\prime} and parallel to the $\mathrm{H}-\mathrm{H}$ line in the $\mathrm{H}_{2} \mathrm{O}$ molecule and the axis z is named θ_{2}. The value of both angles varies between 0 and $\pi . \phi$ is the angle between the planes defined by the z^{\prime} and z axes and $z^{\prime \prime}$ and z axes, and its value varies between 0 and π. Finally, α is the angle that the water molecular plane forms with respect to R and varies between 0 and 2π.

The PES can be expanded into a series of appropriate angular functions multiplied by radial coefficients (expansion moments), as follows:

$$
\begin{equation*}
V\left(R ; \alpha, \theta_{1}, \theta_{2}, \phi\right)=\sum_{m} v_{m}(R) F_{m}\left(\alpha, \theta_{1}, \theta_{2}, \phi\right) \tag{1}
\end{equation*}
$$

where the $v_{m}(R)$ coefficients are the expansion moments depending on the R coordinate and $F_{m}\left(\alpha, \theta_{1}, \theta_{2}, \phi\right)$ are the angular functions, which can be written in terms of a function $w(\alpha)$ (see below), multiplied by the bipolar spherical harmonic, $Y_{L_{1} L_{2}}^{L 0}\left(\theta_{1}, \theta_{2}, \phi\right):^{12}$

$$
\begin{equation*}
V\left(R ; \alpha, \theta_{1}, \theta_{2}, \phi\right)=\sum_{L_{1}, L_{2}, L} v_{L_{1} L_{2} L}(R) w(\alpha) Y_{L_{1} L_{2}}^{L 0}\left(\theta_{1}, \theta_{2}, \phi\right) \tag{2}
\end{equation*}
$$

with $L_{1}, L_{2}=0,1,2, \ldots,\left|L_{1}-L_{2}\right| \leq L \leq L_{1}+L_{2}$; then, eq 1 can be rewritten as

$$
\begin{align*}
& V\left(R ; \alpha, \theta_{1}, \theta_{2}, \phi\right)= \\
& \quad \sum_{i} w_{i}(\alpha) \sum_{L_{1}, L_{2}, L}\left(\begin{array}{lll}
L_{1} & L_{2} & L \\
m & -m & 0
\end{array}\right) v_{L_{1} L_{2} L}(R) Y_{L_{1}}^{m}\left(\theta_{1}, 0\right) Y_{L_{2}}^{-m}\left(\theta_{2}, \phi\right) \tag{3}
\end{align*}
$$

where

$$
\left(\begin{array}{lll}
L_{1} & L_{2} & L \\
m & -m & 0
\end{array}\right)
$$

is the Wigner $3-j$ symbol, $-\min \left(L_{1}, L_{2}\right) \leq m \leq \min \left(L_{1}, L_{2}\right)$, $Y_{L_{1}}^{m}\left(\theta_{1}, 0\right)$ and $Y_{L_{2}}^{-m}\left(\theta_{2}, \phi\right)$ are the spherical harmonics.

Figure 2. The 18 leading configurations are illustrated. For each configuration, the value of the α angle is reported, indicated by the subscripts <, \perp, and $>$ for $\alpha=0, \pi / 2$, and π, respectively. In parentheses, all three values indicating the angles θ_{2}, θ_{1}, and ϕ are reported. As for L, ϕ is undetermined and configurations are equivalent for any value of α, while $T_{a_{>}}$and $T_{a_{<}}$are equivalent because of symmetry properties, reducing the total to 15 different configurations.

Figure 3. $\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2}$ interaction energies for the leading configurations of Figure 2 as a function of R, the distance between the centers of mass of the $\mathrm{H}_{2} \mathrm{O}$ and H_{2} molecules. Symbols indicate ab initio points and curves are from Rydberg fits, as described in the text.

Since both molecules involved here, $\mathrm{H}_{2} \mathrm{O}$ and H_{2}, are symmetric with respect to exchange of their hydrogen atoms, only even moments contribute to the sum in eq 3 and it will be shown adequate that the sum can be truncated for $L_{1}=L_{2}=2$, as done in previous works for systems involving diatomics, such as $\mathrm{N}_{2} \cdots \mathrm{~N}_{2}, \mathrm{O}_{2} \cdots \mathrm{O}_{2}$, and $\mathrm{N}_{2} \cdots \mathrm{O}_{2} \cdot{ }^{3-7}$ Explicitly, after extensive algebraic manipulations, one obtains

$$
\begin{align*}
& V\left(R ; \alpha, \theta_{1}, \theta_{2}, \phi\right)=\sum_{i} w_{i}(\alpha)\left[v_{000}(R)+\right. \\
& \frac{\sqrt{5}}{4} v_{202}(R)\left(3 \cos \left(2 \theta_{1}\right)+1\right)+\frac{\sqrt{5}}{4} v_{022}(R)\left(3 \cos \left(2 \theta_{2}\right)+\right. \\
& 1)+\frac{\sqrt{5}}{16} v_{220}(R)\left[\left(3 \cos \left(2 \theta_{1}\right)+1\right)\left(3 \cos \left(2 \theta_{2}\right)+1\right)+\right. \\
& 12 \sin \left(2 \theta_{1}\right) \sin \left(2 \theta_{2}\right) \cos (\phi)+3\left(1-\cos \left(2 \theta_{1}\right)\right) \times \\
& \left.\left(1-\cos \left(2 \theta_{2}\right)\right) \cos (2 \phi)\right]-\frac{5 \sqrt{14}}{112} v_{222}(R)\left[\left(3 \cos \left(2 \theta_{1}\right)+\right.\right. \\
& 1)\left(3 \cos \left(2 \theta_{2}\right)+1\right)+6 \sin \left(2 \theta_{1}\right) \sin \left(2 \theta_{2}\right) \cos (\phi)- \\
& \left.3\left(1-\cos \left(2 \theta_{1}\right)\right)\left(1-\cos \left(2 \theta_{2}\right)\right) \cos (2 \phi)\right]+ \\
& \frac{3 \sqrt{70}}{112} v_{224}(R)\left[\left(3 \cos \left(2 \theta_{1}\right)+1\right)\left(3 \cos \left(2 \theta_{2}\right)+1\right)-\right. \\
& 8 \sin \left(2 \theta_{1}\right) \sin \left(2 \theta_{2}\right) \cos (\phi)+\frac{1}{2}\left(1-\cos \left(2 \theta_{1}\right)\right) \times \\
& \left.\left.\left(1-\cos \left(2 \theta_{2}\right)\right) \cos (2 \phi)\right]\right] \tag{4}
\end{align*}
$$

In order to evaluate the expansion moments of the interaction potential $V\left(R, \theta_{1}, \theta_{2}, \phi, \alpha\right)$, we define 18 leading configurations (see Figure 2), whose choice is due to physical and geometric considerations. The advantage of such a choice is to select a number of configurations which permit interpolation to account fully for the symmetries of the interactions between the molecules forming the system. We can divide the leading configurations into six classes depending on their values of θ_{2}, θ_{1}, and ϕ : specifically, L is the configuration with $\theta_{2}=\theta_{1}=0$ and ϕ undetermined; for the H configuration $\theta_{2}=\theta_{1}=\pi / 2$ and $\phi=0 ; Z$ has $\theta_{2}=\theta_{1}=\pi / 4$ and $\phi=0$; for $X, \theta_{2}=\theta_{1}=$ $\phi=\pi / 2 ; T_{a}$ has $\theta_{2}=0$ and $\theta_{1}=\phi=\pi / 2$; finally, T_{b} has $\theta_{1}=$ 0 and $\theta_{2}=\phi=\pi / 2$. For each class, three different configurations exist for α values $0, \pi / 2$, and π that we indicate with
subscripts $<, \perp$, and $>$, respectively. Because of the symmetry of the system, $T_{a_{>}}=T_{a_{<}}$, while, for L, since ϕ is undetermined, α cannot be defined in these cases. Fixing the α configuration, we have a system with six equations similar to eq 4 that can be algebraically inverted by Cramer's rule:

$$
\begin{array}{r}
\begin{array}{r}
v_{000}(i ; R)=\frac{1}{9}\left(2 V_{H}(i ; R)+V_{L}(i ; R)+2 V_{T_{a}}(i ; R)+\right. \\
\left.2 V_{T_{b}}(i ; R)+2 V_{X}(i ; R)\right)
\end{array} \\
v_{202}(i ; R)=\frac{-2 \sqrt{5}}{45}\left(V_{H}(i ; R)-V_{L}(i ; R)+V_{T_{a}}(i ; R)-\right. \\
\left.2 V_{T_{b}}+V_{X}(i ; R)\right)
\end{array} \begin{array}{r}
v_{022}(i ; R)=\frac{-2 \sqrt{5}}{45}\left(V_{H}(i ; R)-V_{L}(i ; R)-2 V_{T_{a}}(i ; R)+\right. \\
\left.V_{T_{b}}+V_{X}(i ; R)\right)
\end{array} \begin{array}{r}
v_{220}(i ; R)=\frac{-2 \sqrt{5}}{225}\left(4 V_{H}(i ; R)-V_{L}(i ; R)-5 V_{T_{a}}(i ; R)-\right. \\
\left.5 V_{T_{b}}-5 V_{X}(i ; R)+12 V_{Z}(i ; R)\right) \\
v_{222}(i ; R)=\frac{\sqrt{14}}{315}\left(13 V_{H}(i ; R)-V_{L}(i ; R)+7 V_{T_{a}(i ; R)+}^{\left.7 V_{T_{b}}-14 V_{X}(i ; R)-12 V_{Z}(i ; R)\right)}\right.
\end{array}
$$

$v_{224}(i ; R)=\frac{8 \sqrt{70}}{525}\left(V_{H}(i ; R)-V_{L}(i ; R)-2 V_{Z}(i ; R)\right)$
where i corresponds to the three different values of the α angle, $\alpha=0, \pi / 2, \pi$.

It is now convenient to define the $w(\alpha)$ functions, which establish the weight of each set of leading configuration ($i=$ $0, \pi / 2, \pi)$ according to the corresponding α value. Specifically, by expanding it in a cosine series including $\cos (n \alpha)$ terms ($n=$ $0,1,2$), we have, in general,

$$
\begin{equation*}
w_{i}(\alpha)=a_{i}+b_{i} \cos (\alpha)+c_{i} \cos (2 \alpha) \tag{6}
\end{equation*}
$$

for $i=0, \pi / 2, \pi$, specifically:

$$
\begin{array}{lll}
w_{1}(0)=1 & w_{1}(\pi / 2)=0 & w_{1}(\pi)=0 \\
w_{2}(0)=0 & w_{2}(\pi / 2)=1 & w_{2}(\pi)=0 \tag{7}\\
w_{3}(0)=0 & w_{3}(\pi / 2)=0 & w_{3}(\pi)=1
\end{array}
$$

allowing to compute parameters a_{i}, b_{i}, and c_{i} as follows:

$$
\begin{align*}
& w_{1}(\alpha)=\frac{1}{4}+\frac{1}{2} \cos (\alpha)+\frac{1}{4} \cos (2 \alpha) \\
& w_{2}(\alpha)=\frac{1}{2}-\frac{1}{2} \cos (2 \alpha) \tag{8}\\
& w_{3}(\alpha)=\frac{1}{4}-\frac{1}{2} \cos (\alpha)+\frac{1}{4} \cos (2 \alpha)
\end{align*}
$$

The general expression for the potential is obtained substituting eqs 5 and 8 in eq 4 for each α configuration.

The total isotropic term of potential energy is given by the $\bar{v}_{000}(R)$ function which turns out to be

$$
\begin{array}{r}
\bar{v}_{000}(R)=\frac{1}{4} v_{000}(\alpha=0 ; R)+\frac{1}{2} v_{000}(\alpha=\pi / 2 ; R)+ \\
\frac{1}{4} v_{000}(\alpha=\pi ; R) \tag{9}
\end{array}
$$

This term is important because it can be measured by molecular beam experiments with rotationally hot molecules and can be compared with other systems. ${ }^{13,14}$

3. Ab Initio Calculations

The ab initio calculations were performed using the Gaussian 03 code. ${ }^{15}$ Initially, we optimized the geometries for $\mathrm{H}_{2} \mathrm{O}$ and H_{2} molecules (Table 1), by using the $\operatorname{CCSD}(\mathrm{T})$ method, with the cc-pVXZ and aug-cc-pVXZ basis sets $(X=D, T, Q, 5)$. We also used the complete basis set (CBS) extrapolation. Employing asymptotic extrapolation allows calculations of molecular properties with a reasonable degree of accuracy for molecules of relatively high molecular size. In this work, it can be seen that calculations without the diffusion function (basis set without aug function) do not reproduce satisfactorily the polarizability of $\mathrm{H}_{2} \mathrm{O}$ and H_{2} molecules; therefore, they are not reliable to construct the PES for this system. We therefore have chosen a simple method (MP2) combined with an augmented complete basis set, that appears to give accurate results exemplified in Table 2, which lists well depths and positions for the isotropic component of the potential v_{000}. The representation of the PES is in terms of the mathematical approach (hyperspherical harmonics) outlined in the previous section. With respect to data taken as a reference, for $\mathrm{H}_{2} \mathrm{O}$, the smallest errors are $0.0013 \AA$ for the $\mathrm{O}-\mathrm{H}$ distance in $\mathrm{H}_{2} \mathrm{O}$ and 0.1151° for the HOH angle at aug-cc-pVQZ, while for H_{2} the error is $0.0005 \AA$ for the $\mathrm{H}-\mathrm{H}$ distance. For the frequencies of the vibrational modes, the errors are $42.9,129.8$, and $148.7 \mathrm{~cm}^{-1}$ for $\mathrm{H}_{2} \mathrm{O}$ and $1.5 \mathrm{~cm}^{-1}$ for H_{2}, both at aug-cc-pVQZ. Our data were compared with experimental polarizabilities and dipole moments: for $\mathrm{H}_{2} \mathrm{O}$, we get an error of 0.1092 au and 0.1128 D , respectively, and 0.0622 au for the H_{2} polarizability at aug-ccpVQZ. According to these results, the geometries to be used will be the ones calculated at $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-PVQZ, and the molecules will be kept frozen for further calculations.
The second-order Møller-Plesset (MP2) level and aug-ccpVQZ basis set were chosen to calculate the PES. In order to
eliminate the basis set superposition error, the full counterpoise Boys and Bernardi method ${ }^{16}$ was used. According to it, the energies of monomers were calculated using the same full basis set, and the interaction energy is then defined as

$$
\begin{equation*}
E_{C P}=E_{A B}\left(\chi_{A}+\chi_{B}\right)-\left[E_{A}\left(\chi_{A}+\chi_{B}\right)+E_{B}\left(\chi_{A}+\chi_{B}\right)\right] \tag{10}
\end{equation*}
$$

where χ_{A} and χ_{B} are the basis sets of each monomer of the complex $A B$. We calculated a set of 101 single potential energy points on the surfaces, which allows us to describe completely the potential energy surface, for each of the 15 configurations (see Figure 2), remembering that we have 18 different schemes, six for $\alpha=0$, six for $\alpha=\pi / 2$, and six for the $\alpha=\pi$ configuration, but $L_{>}=L_{\perp}=L_{<}$and $T_{a_{>}}=T_{a_{<}}$, as described previously (section 2 and Figure 2). All energies were calculated as a function of the distance R between the center of mass $\mathrm{CM}^{\prime \prime}$ of $\mathrm{H}_{2} \mathrm{O}$ and the center of mass CM^{\prime} of H_{2} at a fixed $\alpha, \theta_{1}, \theta_{2}$, and ϕ angle (see Figure 1 for further details). The smallest distance R depends on the leading configuration, and can be appreciated by inspection of Figure 3.

The analytical form of the PES, for each of the leading configurations, is constructed by fitting the following fifth degree generalized Rydberg function ${ }^{11}$ into the $a b$ initio points:
$V(R)=D_{e} \sum_{i=1}^{5}\left(1+a_{i}\left(R-R_{\mathrm{eq}}\right)^{i}\right) \exp \left[-a_{i}\left(R-R_{\mathrm{eq}}\right)\right]+E_{\text {ref }}$
where $D_{e}, a_{i}, R_{\mathrm{eq}}$, and $E_{\text {ref }}$ are adjustable parameters. A nonlinear least-squares procedure was used to obtain the values of the adjustable parameters that minimize the differences between analytic energies obtained with the generalized Rydberg function and the MP2/aug-cc-pVQZ data. The largest rms value of these fits is $0.005731 \mathrm{kcal} \mathrm{mol}^{-1}$ for the L configuration, and the smallest one is $0.000103 \mathrm{kcal} \mathrm{mol}^{-1}$ for the H_{1} configuration. (As for the van der Waals systems, also cm^{-1} is a useful unit, here we report the conversion unit $1 \mathrm{kcal} \mathrm{mol}^{-1}=349.76 \mathrm{~cm}^{-1}$.)

There are several proposals for "combination formulas" that allow one to predict the strength, ε, and range, R_{m}, of the van der Waals contribution of systems of the type of the ones studied here. We follow a procedure similar to that outlined in ref 17 , which consists of the representation of ε and R_{m} in terms of the polarizabilities α_{1} and α_{2} of the interacting partners. ${ }^{18}$ Specifically,

$$
\begin{equation*}
R_{m}=1.767 \frac{\alpha_{1}^{1 / 3}+\alpha_{2}^{1 / 3}}{\left(\alpha_{1} \alpha_{2}\right)^{0.095}} \tag{12}
\end{equation*}
$$

where R_{m} is given in \AA and α_{1} and α_{2} in \AA^{3},

$$
\begin{align*}
\varepsilon & =0.72 C_{\mathrm{LR}} R_{m}^{-6} \tag{13}\\
C_{\mathrm{LR}} & =\kappa_{\varepsilon} \frac{\alpha_{1} \alpha_{2}}{\sqrt{\frac{\alpha_{1}}{N_{1}}}+\sqrt{\frac{\alpha_{2}}{N_{2}}}} \tag{14}
\end{align*}
$$

where C_{LR} is an effective long-range London coefficient. κ_{ε} is a scaling factor and depends on the energy units (for energy in kcal $\mathrm{mol}^{-1}, \kappa_{\varepsilon}=362.051$). N_{1} and N_{2} are effective numbers of
TABLE 1: Basis Set Studies for $\mathbf{H}_{2} \mathrm{O}$ and $\mathrm{H}_{\mathbf{2}}$ Determined with CCSD(T)

basis set	$\mathrm{H}_{2} \mathrm{O}$							
	geometry		frequencies $\left(\mathrm{cm}^{-1}\right)$			μ (D)	α (au)	energy (hartree)
	$R_{\text {eq }}(\AA)$	A (deg)	ω_{1}	ω_{2}	ω_{3}			
cc-pVDZ	0.9663	101.9150	1690.0	3821.6	3927.6	2.0906	4.8092	-76.2413050
aug-cc-pVDZ	0.9665	103.9353	1637.9	3786.8	3904.7	1.9948	9.2392	-76.2739036
cc-pVTZ	0.9595	103.5371	1669.1	3840.4	3944.7	2.0252	6.9677	-76.3322164
aug-cc-pVTZ	0.9616	104.1851	1645.6	3811.2	3920.3	1.9702	9.4927	-76.3423258
cc-pVQZ	0.9579	104.0872	1659.3	3844.3	3951.0	1.9957	7.8654	-76.3597977
aug-cc-pVQZ	0.9589	104.3626	1649.7	3831.2	3940.8	1.9628	9.5328	-76.3635876
cc-pV5Z	0.9580	104.3277	1653.4	3840.6	3949.6	1.9851	8.5290	-76.3690418
CBS extrapolation ${ }^{a}$ reference	0.9599 ± 0.0026	104.1736 ± 0.2479	1651.4 ± 11.4	3827.5 ± 20.1	3936.8 ± 16.4	$\begin{aligned} & 1.9841 \pm 0.0189 \\ & 1.8546 \pm 0.0006^{25} \end{aligned}$	$\begin{aligned} & 8.7512 \pm 1.0037 \\ & 9.642,9.0658^{26} \end{aligned}$	$-76.3471908 \pm 0.0247155$
	$0.9557,{ }^{\text {b }} 0.961^{c}$	$104.05,{ }^{\text {b }} 105.1^{c}$	$1640^{\text {c }}$	$3820^{\text {c }}$	$3919{ }^{\text {c }}$	$1.9185,{ }^{b} 1.8590^{c}$		
	$0.9589,{ }^{\text {d }} 0.964{ }^{e}$	104.16, ${ }^{\text {d }} 102.9{ }^{e}$	1699^{e}	$3737{ }^{e}$	$3850{ }^{\text {e }}$	$1.9249,{ }^{\text {d }} 1.85{ }^{e}$	$9.6311,{ }^{c} 8.419^{e}$	

[^1]TABLE 2: Comparison of Phenomenological ${ }^{17,22}$ Estimates with $\operatorname{CCSD}(T)$ Values for Different Basis Sets and Other Data ${ }^{a}$

basis set	without induction correction			with induction correction					
	R_{m}	ε		R_{m}	ε				
aug-cc-pVDZ	3.5657	0.1289		3.5272	0.1542				
aug-cc-pVTZ	3.5731	0.1296		3.5362	0.1538				
aug-cc-pVQZ	3.5735	0.1295		3.5370	0.1534				
CBS extrapolation ${ }^{b}$	3.5347	0.1237		3.4961	0.1483				
	R_{m}							ε	
MP2	3.5704		0.1336						
experimental	3.61^{2}		0.1115^{2}						
other calculations	3.52^{23}		0.1415^{23}						
		3.4908^{1}		0.1753^{1}					

${ }^{a}$ Well depth energies, $\varepsilon\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$, and corresponding values for the R coordinate, $R_{m}(\AA)$, for the isotropic component $v_{000} .{ }^{b}$ See ref 28, using formula $Y=Y_{\infty}+Y_{0} / X^{3}$.

Figure 4. Dependence on distance of the centers of mass of $\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2}$ molecules of isotropic moments compared with reference data of Valiron et al. ${ }^{1}$ and Phillips et al. ${ }^{23}$
electrons which contribute to the polarizability of each partner; numerical coefficients in eqs 12-14 were determined empiri-
cally. ${ }^{18}$ Equation 14^{19} is a generalization of the Slater-Kirkwood equation; ${ }^{20}$ it takes into account the various multipole interaction terms and the damping effect (see ref 19 and references therein). The effective number of electron N_{1} and N_{2} considers not only the external electrons but also the internal ones, ${ }^{21}$ whose contribution to polarizability is not negligible.

We also introduce a correction for the induction effects due to the interaction between the permanent dipole moment of $\mathrm{H}_{2} \mathrm{O}$ and the induced dipole of $\mathrm{H}_{2} .{ }^{17,22}$ These effects are introduced as a correction to the previous formulas adding an attractive induction term to the long-range part of the potential. The formula for the induction coefficient $C_{\text {IN }}$ is as follows:

$$
\begin{equation*}
C_{\mathrm{IN}}=\kappa_{i} \alpha_{2} \mu_{1}^{2} \tag{15}
\end{equation*}
$$

where μ_{1} is the dipole moment of $\mathrm{H}_{2} \mathrm{O}, \alpha_{2}$ is the polarizability of H_{2}, and κ_{i} is a scaling factor depending on units, $\kappa_{i}=$ 14.40984 for $C_{\text {IN }}$ in $\mathrm{kcal} / \mathrm{mol} \AA^{6}$. Accordingly, the corrected equations for R_{m} and ε are

$$
\begin{equation*}
R_{m}=1.767 \frac{\alpha_{1}^{1 / 3}+\alpha_{2}^{1 / 3}}{\left(\alpha_{1} \alpha_{2} \rho\right)^{0.095}} \tag{16}
\end{equation*}
$$

where $\rho=\left(C_{\mathrm{LR}}+C_{\mathrm{IN}}\right) / C_{\mathrm{IN}}$, and

$$
\begin{equation*}
\varepsilon=0.72\left(C_{\mathrm{LR}}+C_{\mathrm{IN}}\right) R_{m}^{-6} \tag{17}
\end{equation*}
$$

In this study, we used eqs 16 and 17 to estimate the distance and energy of equilibrium at different levels of calculations, respectively, as presented in Table 2. From these data, we can see that in the values without induction correction using $\operatorname{CCSD}(\mathrm{T})$ /aug-cc-pVQZ methodology ($3.5735 \AA$ for the distance of equilibrium and $0.1295 \mathrm{kcal} \mathrm{mol}^{-1}$ for the energy of equilibrium) the results are close to the experimental data ${ }^{2}$ (3.61 \AA and $0.1115 \mathrm{kcal} \mathrm{mol}^{-1}$) and more accurate than other methodologies (MP4 ${ }^{23}$ and $\operatorname{CCSD}(\mathrm{T})-\mathrm{R} 12^{1}$). Therefore, these values without induction correction can guide us to calibrate

Figure 5. Two-dimensional cut through the $\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2}$ PES. Contours are given in $\mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$. $T_{b}=(R, \alpha, 0, \pi / 2,0)$ configuration (proton acceptor).

Figure 6. Two-dimensional cut through the $\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2}$ PES. Contours are given in kcal mol ${ }^{-1}$. (a) $\left(3.57036,0, A_{\mathrm{H}_{2} \mathrm{O}}-\theta, \theta_{2}, \pi / 2\right.$) configuration. (b) (3.57036, $\left.A_{\mathrm{H}_{2} \mathrm{O}}, A_{\mathrm{H}_{2} \mathrm{O}}-\theta, \theta_{2}, 0\right)$ configuration.
our model to reproduce the distance and energy of equilibrium for the $\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2}$ system.

4. Results and Discussion

We have considered the 18 leading configurations (of which 15 are different, see Figure 2) for which the $\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2}$ interaction energy has been calculated at various R (the distance between the centers of mass of the $\mathrm{H}_{2} \mathrm{O}$ molecule and of the H_{2} molecule) by the ab initio methods, as explained in detail in section 3.

Figure 3 shows both the $a b$ initio energy points and the corresponding Rydberg curve fitting for the 15 different configurations. Purely repulsive systems are those whose curves do not have a minimum. Ab initio calculations show that such systems are those involving $H_{\perp}, X_{>}, L, H_{>}, X_{\perp}$, and $T_{b_{<}}$ configurations. The hydrogen bond plays an important role in the stabilization of these systems. According to previous studies ${ }^{24}$ regarding the interaction between $\mathrm{H}_{2} \mathrm{O}$ and H_{2}, the $\mathrm{H}_{2} \mathrm{O}$ molecule acts as a proton acceptor or proton donor. In the first case, the $\mathrm{H}-\mathrm{H}$ bond of H_{2} is expected to be collinear to the C_{2}
axis in the direction of the oxygen atom, while, in the second case, one of the two OH bonds is perpendicular to the $\mathrm{H}-\mathrm{H}$ bond of the H_{2} molecule and directed toward the middle point of the $\mathrm{H}-\mathrm{H}$ distance. $T_{b_{>}}$is the configuration with the highest value of minimum in energy (more negative) and corresponds to the proton acceptor case. None of the leading configurations corresponds to the proton acceptor case, although some of them show an attractive character ascribable to hydrogen bond interaction, such as Z and T_{a} configurations. As for the $Z_{>}$ configuration, it shows repulsive character like the other configurations with $\alpha=\pi$, but it also presents a minimum, differently from the other configurations with the same value of α. By comparing two $\alpha=0$ configurations such as $Z_{<}$and $T_{b_{<}}$, the energy of equilibrium of $Z_{<}$is lower (more negative) and the intermolecular potential increase is steeper than $T_{b_{<}}$. The stabilizing effect of the hydrogen bond, with deep minima and steep increasing of interaction potentials at short range, has already been observed in previous works. ${ }^{8,9}$ Potential profiles of T_{a} configurations are very similar, because the position of the oxygen atom has little influence on these geometries.

Figure 4 shows the isotropic part of the potential v_{000} as a function of R (eq 9) calculated in this work and compared with reference data. ${ }^{1,23}$ In Table 2, the distance and energy of equilibrium for v_{000} are reported. It can be of interest to compare the isotropic term, energy of $0.1336 \mathrm{kcal} \mathrm{mol}^{-1}$ at $3.5704 \AA$, with other systems like $\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{He}$ where the energy and distance are $0.0633 \mathrm{kcal} \mathrm{mol}^{-1}$ at $3.45 \AA^{13}$ and $0.066 \mathrm{kcal} \mathrm{mol}^{-1}$ at 3.626 A. ${ }^{8}$

Figure 5 shows the isoenergetic contours for the proton acceptor case $T_{b_{\imath}}$, as a function of R and α angles. The minimum energy and distance is $0.6014 \mathrm{kcal} \mathrm{mol}^{-1}$ and $3.1224 \AA$ to be compared with data of Valiron et al. ${ }^{1}$ and of Zhang et al. ${ }^{24}$ $\left(0.6723 \mathrm{kcal} \mathrm{mol}^{-1}\right.$ at $3.0798 \AA$ and $0.5638 \mathrm{kcal} \mathrm{mol}^{-1}$ at 3.1 \AA, respectively). The difference in energy is as expected from the relative accuracies of the calculations.

In order to compare our model with the PES presented by Valiron et al., ${ }^{1}$ we show in Figure 6 two isoenergetic contours. In Figure 6a, we kept the distance at the isotropic minimum, $R_{m}=3.57036 \AA$ and $\alpha=0$, the angle $\theta_{1}=A_{\mathrm{H}_{2} \mathrm{O}}-\theta$ and $\phi=$ 0 , where $A_{\mathrm{H}_{2} \mathrm{O}}$ is the angle of the HOH bond in $\mathrm{H}_{2} \mathrm{O}$ (compared with Figure 8 of ref 1). In Figure 6b, the distance is the same with $\alpha=A_{\mathrm{H}_{2} \mathrm{O}}, \theta_{1}=A_{\mathrm{H}_{2} \mathrm{O}}-\theta$, and $\phi=\pi / 2$ (compared with Figure 7-f of ref 1). These figures are seen to reproduce adequately the reference data, using a simpler method with a physically motivated and compact representation. We consider that the material provided allows direct comparison of angular dependence with that of previous work (Valiron et al. ${ }^{1}$), although a figure cannot be provided lacking data input for the latter.

5. Conclusion

A representation of the potential energy surface of the rigid $\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2}$ system based on orthogonal vectors was presented. The interaction potential was represented by an expansion in real hyperspherical harmonics depending on the distance R between the centers of mass of the two molecules and four angular variables $\theta_{1}, \theta_{2}, \phi$, and α; three of these account for an external contribution depending on the mutual orientation of the two molecules, and an internal contribution, depending on one angle, α, which describes the position of the oxygen atom in $\mathrm{H}_{2} \mathrm{O}$ with respect to the entire system. The system studied in this work is definitely more complex than other systems previously studied by orthogonal vector representation, ${ }^{8,9,12}$ where the interatomic potential depends at most on three angle variables. The extension of the dimension of the manifold in this case in not trivial.
The surface was generated in the framework of the supermolecular approach, using the counterpoise-corrected interaction energies at the MP2/aug-cc-pVQZ level. The PES was computed for about one hundred for each of the 18 leading configurations, whose number reduces to 15 because of symmetry properties. Results were compared with experimental and theoretical ${ }^{1}$ works with a higher computational cost, involving a very high number of points on the 5D grid and a very large number of random orientations of $\mathrm{H}_{2} \mathrm{O}$ and H_{2} molecules (for other state-of-theart $a b$ initio calculations of the $\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2}$ system, see, for example, Hodges et al. ${ }^{10}$). This method allows us to reach a compromise between the accuracy of results and the economicity of the calculations. Especially the expansion used in this method can be employed to calculate the isotropic component of the potential. Hyperspherical harmonics allow us to account for the symmetry properties of the system, providing all of the
configurations of the five-dimensional PES for all of the values of R and the angle variables, of use for molecular dynamics simulations.

Acknowledgment. V.W.R. thanks the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPESP (Funda do Estado de São Paulo) for the fellowship. The authors also thank Professor Vincenzo Aquilanti for useful discussions and inspiration.

Supporting Information Available: Ab initio well depths, ε, and corresponding atom - molecule distance, $R_{\text {eq }}$, for various configurations of the $\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2}$ system, and parameters for Rydberg fitting of ab initio curves. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Valiron, P.; Wernli, M.; Faure, A.; Wiesenfeld, L.; Rist, C.; Kedzuch, S.; Noga, J. J. Chem. Phys. 2008, 129, 134306.
(2) Weida, M.; Nesbitt, D. J. J. Chem. Phys. 1999, 110, 156.
(3) Cappelletti, D.; Vecchiocattivi, F.; Pirani, F.; Heck, E. L.; Dickinson, A. S. Mol. Phys. 1998, 93, 485-499.
(4) Aquilanti, V.; Bartolomei, M.; Cappelletti, D.; Carmona-Novillo, E.; Pirani, F. Phys. Chem. Chem. Phys. 2001, 3, 3891-3894.
(5) Carmona-Novillo, E.; Pirani, F.; Aquilanti, V. Int. J. Quantum Chem. 2004, 99, 616-627.
(6) Aquilanti, V.; Ascenzi, D.; Bartolomei, M.; Cappelletti, D.; Cavalli, S.; Vitores, M. C.; Pirani, F. J. Am. Chem. Soc. 1999, 121, 10794-10802.
(7) Aquilanti, V.; Carmona-Novillo, E.; Pirani, F. Phys. Chem. Chem. Phys. 2002, 4, 4970-4978.
(8) Barreto, P. R. P.; Vilela, A. F. A.; Lombardi, A.; Maciel, G. S.; Palazzetti, F.; Aquilanti, V. J. Phys. Chem. A 2007, 111, 12754-12762.
(9) Maciel, G. S.; Barreto, P. R. P.; Palazzetti, F.; Lombardi, A.; Aquilanti, V. J. Chem. Phys. 2008, 129, 164302.
(10) Hodges, M. P.; Wheatley, R. J.; Schenter, G. K.; Harvey, A. H. J. Chem. Phys. 2004, 120, 710.
(11) Rydberg, R. Z. Phys. 1932, 73, 376.
(12) Aquilanti, V.; Bartolomei, M.; Novillo, E. C.; Pirani, F. J. Chem. Phys. 2003, 118, 2214.
(13) Aquilanti, V.; Cornicchi, E.; M.Teixidor, M.; Saendig, N.; Pirani, F.; Cappelletti, D. Angew. Chem., Int. Ed. Engl. 2005, 44, 2356.
(14) Cappelletti, D.; Vilela, A. F. A.; Barreto, P. R. P.; Gargano, R.; Pirani, F.; Aquilanti, V. J. Chem. Phys. 2006, 1, 125.
(15) Frisch, M. J.; et al. Gaussian 03; Gaussian, Inc.: Wallingford, CT, 2004.
(16) Boys, F. S.; Bernardi, D. Mol. Phys. 1970, 19, 553.
(17) Barreto, P. R. P.; Palazzetti, F.; Grossi, G.; Lombardi, A.; Maciel, G. S.; Vilela, A. F. A. Int. J. Quantum Chem., doi: 10.1002/qua. 22127. (18) Pirani, F.; Maciel, G. S.; Cappelletti, D.; Aquilanti, V. Int. Rev. Phys. Chem. 2006, 25, 165-199.
(19) Cambi, R.; Cappelleti, D.; Liuti, G.; Pirani, F. J. Chem. Phys. 1991, 95, 1852.
(20) Slater, J. C.; Kirkwood, J. G. Phys, Rev. 1931, 37, 682.
(21) Pitzer, K. S. Adv. Chem. Phys. 1959, 2, 59.
(22) Aquilanti, V.; Cappelletti, D.; Pirani, F. Chem. Phys. 1996, 209, 299.
(23) Phillips, T. R.; Maluendes, S.; McLean, A. D.; Green, S. J. Chem. Phys. 1994, 101, 5824.
(24) Zhang, Q.; Chenyang, L.; Ma, Y.; Fish, F.; Szczesniak, M. M.; Buch, V. J. Chem. Phys. 1992, 96, 6039.
(25) Clough, S. A.; Beers, Y.; Klein, G. P.; Rothman, L. S. J. Chem. Phys. 1973, 59, 2254.
(26) Olney, T. N.; Cann, N. M.; Cooper, G.; Brion, C. E. Chem. Phys. 1997, 223, 59.
(27) Herzberg, G. Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed.; Van Nostrand Reinhold Company: New York, 1950; Vol. 1.
(28) Yamahi, D.; Kock, H.; Ten-No, S. J. Chem. Phys. 2007, 127, 144104.
(29) Suhai, S. J. Chem. Phys. 1994, 101, 9766.
(30) Xu, X.; Goddard, W. A. I. J. Phys. Chem. A 2004, 108, 2305.
(31) Tschumper, G. S.; Leininger, M. L.; Hoffman, B. C.; Valeev, E. F.; III, H. F. S.; Quack, M. J. Chem. Phys. 2002, 116, 690.
(32) Xantheas, S.; Dunning, T. H. J. Chem. Phys. 1993, 99, 8774.
(33) Sinnokrot, M. O.; Sherrill, C. D. J. Chem. Phys. 2001, 115, 2439.

JP9051819

[^0]: † Part of the "Vincenzo Aquilanti Festschrift".

 * To whom correspondence should be addressed: E-mail: patricia@ plasma.inpe.br (P.R.P.B.); vladir_wagner@msn.com (V.W.R.); fede@ dyn.unipg.it (F.P.).
 * Instituto Nacional de Pesquisas Espaciais - INPE/MCT.
 ${ }^{\text {§ }}$ Università di Perugia.

[^1]: H_{2}

 ${ }^{a}$ See ref 28, using formula $Y=Y_{\infty}+Y_{0} / X^{3} .{ }^{b}$ At MP2/TZ(3d2f,3p2d). ${ }^{29}{ }^{c}$ At X3LYP/aug-cc-pVTZ(-f). ${ }^{30}{ }^{d}$ At CCSD(T)/TZ2P(f,d)+dif. ${ }^{31 e}$ At CASSCF/aug-cc-pVDZ. ${ }^{32}{ }^{2}$ At CCSD(T)/aug/cm ${ }^{3}$-pVTZ. ${ }^{g}$ At B3LYP/aug-cc-pVTZ. ${ }^{33}$

